Registry No. CO, 630-08-0; HI, 10034-85-2; CH₃CO₂H, 64-19-7; CH₃CH₂CO₂H, 79-09-4.

Supplementary Material Available: References (2 pages). Ordering information is given on any current masthead page.

Leonard Kaplan

Union Carbide Corp. P.O. Box 8361 S. Charleston, West Virginia 25303 Received July 1, 1982

Transition Metal/Acid Induced Reductive Coupling of Carbon Monoxide

Summary: Carbon monoxide is converted to acetic acid and to glycolic acid by solutions containing acid and compounds of palladium, rhodium, platinum, and iridium; glycolic and acetic acids are produced in the presence of HCl or H_3PO_4 but, in the presence of iodide, acetic acid alone is produced.

Sir: We report reductive coupling of carbon monoxide to acetic acid and to glycolic acid.

The conversions were effected by solutions containing acid, either introduced as such or formed in situ, and compounds of transition metals.¹⁻³

$$CO + H_2 \xrightarrow[acid]{compound of Pd, Rh, Pt, or Ir}_{acid} \xrightarrow{CH_3CO_2H, HOCH_2CO_2H}$$

Acetic acid has been produced from CO and H_2 by reaction on supported heterogeneous transition-metal catalysts and by reaction with solutions containing ruthenium^{4a}; we have recently described its formation from CO and aqueous HI in the absence of a metal.^{4b}

Representative results obtained by use of compounds of palladium in the presence of acids containing halide or phosphate are in Tables I and II.⁵ Glycolic acid was produced by palladium in combination with HCl or H_3PO_4 (Table I); both palladium and acid are necessary (Table I, note b). In the presence of iodide, acetic acid alone was produced by reaction of CO or CO/H_2 (Table II). Palladium is used in an amount greater than the molal amounts of products.

On the basis of reports in the literature and our own observations, we believe that a body of indirect evidence exists that is consistent with a pathway resembling $CO \rightarrow$ $(HC = 0)CO_2H, CH_2O) \rightarrow HOCH_2CO_2H \rightarrow CH_3CO_2H$ for the formation of products: (1) See ref 4b for a discussion of the transformations $CO + H_2O \rightarrow HCO_2H$; $2CO + H_2O$ \rightarrow HO₂CCHO; CO + HX \rightarrow HCOX; HCO₂H + CO + H₂O \rightarrow HO₂CCHO; HCOI + HI \rightarrow CH₂O + I₂; HO₂CCHO \rightarrow CH₂O; HO₂CCHO → HOCH₂CO₂H; CH₂O + ČO + H₂O → CH₃CO₂H, HOCH₂CO₂H; HO₂CCHO → HO₂CCH₂OH; $HOCH_2CO_2H \rightarrow CH_3CO_2H$ in the absence of a metal. (2) The palladium-catalyzed reduction of acyl halides is well-known. (3) The acid-catalyzed conversion of a glycoloyl-metal compound to an acetyl compound, $ROCH_2C(=O) \rightarrow CH_3C(=O)$, is known.⁶ (4) It was reported that trioxane (formaldehyde trimer), water, and HI reacted with 1000 psi of CO at 150 °C in the presence of PdCl₂ to give HOCH₂CO₂H, CH₃CO₂H, and HCO₂H;⁷ we made similar observations upon addition of formaldehyde (20 mmol) to the $PdCl_2$ /water system of Table I. (5) In contrast, addition of CH_3OH (21, 18, and 11 mmol) to the PdCl₂ system in water, 30% aqueous HCl, and 65% aqueous HI, respectively, resulted in the formation of products in amounts very similar to those given in Tables I and II, respectively.^{8,9} (6) Addition of $HOCH_2CO_2H$ (18) mmol) to the $PdCl_2/30\%$ aqueous HCl and $PdCl_2/water$ systems gave a yield of CH_3CO_2H that was 55% and 18%, respectively, after exclusion of any amount produced (Table I) in the absence of added $HOCH_2CO_2H$. (7) The CH₃CO₂H/HOCH₂CO₂H ratio increased and the amount of HOCH₂CO₂H decreased with increases in time and in [HCl] (Table I). (8) In the presence of I^- , anticipated to be better than Cl⁻ at effecting a metal/acid catalyzed conversion of ROH to RH, only CH₃CO₂H was observed (Table II vs. Table I).

Other metals also effected these reactions: (a) Rh- $(CO)_2$ acac (1.5 mmol), in sulfolane¹⁰ at 250 °C and 12500 psi of 1/1 CO/H₂, combined with HI (3 mmol), I₂ (1.5 mmol), or ZnI_2 (150 mmoles)¹¹ gave 2-5 g of CH_3CO_2H in 4 h. (b) Under conditions similar to those used for palladium (Table I), Ir₄(CO)₁₂ (1.2 mmol) in 30% aqueous HCl and $IrCl_3$ (10 mmol) in water each produced ~0.05 g of CH_3CO_2H ; Ir powder produced none. Under 5000 psi of CO and otherwise similar (Table I) conditions, Na₃IrCl₆ (4 mmol) in 30% aqueous HCl and in water produced 0.08 and 0.03 g, respectively, of CH_3CO_2H . (c) Under conditions similar to those used for palladium (Table I), PtCl₂ (10

(9) The same results were obtained upon addition of HCO_2CH_3 to the PdCl₂/65% aqueous HI system. Cf., e.g., Wada, K.; Baba, A.; Wada, N.
Japan Patent Application 22745, 1981.
(10) Kaplan, L. U.S. Patent 4224237, 1980.

(11) Some other iodides produced smaller amounts of CH_3CO_2H . ZnF_2 , $Zn(CN)_2$, and $Zn(stearate)_2$ were ineffective.

(12) Vauquelin Ann. Phil. 1814, 4, 216.

⁽¹⁾ A unified discussion of "acid catalysis" and "transition metal catalysis" is provided as Supplementary Material.

⁽²⁾ For a review of proton-induced reduction of CO, see Shriver, D. F. in "Catalytic Activation of Carbon Monoxide"; Ford, P. C., Ed.; American Chemical Society: Washington, DC, 1981; ACS Symp. Ser. No. 152, p 1.

⁽³⁾ References to the use of compounds of Pd, Ir, Pt, Ru, and Rh in the presence of acid as ionic hydrogenation catalysts, e.g., as "hydridetransfer agents" to electrophilic centers, are provided as Supplementary Material.

^{(4) (}a) J. F. Knifton has reported the $RuO_2/[Mn_2(CO)_{10}, Mn(acac)_3,$ (4) (a) 5. F. Killioni has reported the rule $2_1[vin_2(CO)]_0$, $Min(aca)_3$, Min(aand 4 339 545, 1982, respectively. G. Jenner, A. Kiennemann, E. Bagh-erzadah, and A. Deluzarche (*React. Kinet. Catal. Lett.* 1980, 15, 103) reported the RuCl₃·3H₂O- and RuO₂-catalyzed conversion of 1-propanol to *n*-propyl acetate by 1100 atm of 1/1 CO/H₂. D. W. Smith (British Patent Publication 2074164A, 1981) reported the formation of CH₃CO₂H and CH₃CO₂CH₃ in unreported amounts as products of the reaction of CO/H₂ with halogen-containing ruthenium catalysts in N-methylpyrrolidone as solvent at \sim 500 atm. (b) Kaplan, L., preceding communication in this issue.

⁽⁵⁾ A discussion of the chemistry of palladium in the presence of CO, anions, and/or acids and of the chemistry of palladium carbonyl halide anions is provided as Supplementary Material.

⁽⁶⁾ For example, see Cutler, A.; Bodnar, T.; Coman, G.; LaCroce, S.; Lambert, C.; Menard, K. In "Catalytic Activation of Carbon Monoxide"; Ford, P. C., Ed.; American Chemical Society: Washington, DC, 1981; ACS Symp. Ser. No 152, p 283.
 (7) Lapporte, S. J.; Toland, W. G. U.S. Patent 3 754 028, 1973.

⁽⁸⁾ However, if it is the reaction of compounds other than the material added or its progeny that limits the formation of product, the absence of an increase in amount of the product upon addiiton of that material is not necessarily citable as evidence against the intermediacy of that material. We did observe in the two experiments, however, the formation of products, not normally formed, tentatively identified as $CH_3Cl + CH_3OCH_3$ and two-carbon hydrocarbons, respectively. The significance of these observations also is ambiguous since those products may have been consolation fates of the added CH_3OH , i.e., a limiting reagent may not have been available to the CH₃OH in adequate quantity

Table I.	Palladium/	Acid	Induced	Reductive	Coupling of	CO^a
----------	------------	------	---------	-----------	-------------	--------

		product in solution, ^{b, c} g		
Pd compd	solvent	$HOCH_2CO_2H^d$	CH ₃ CO ₂ H	
PdCl, or Na ₂ PdCl ₄	water	0.1-0.3 ^e		
Pd black	water $+$ HCl (2 mmol)	~0.05		
Pd black	water + $H_{a}PO_{a}$ (20 mmol) ^f	~0.05		
Pd Cl ₂	30% aq HCl (0.75 h)	0.05	0.03	
PdCl,	30% ag HCl		0.10	
PdCl,	$59\% \text{ aq } H_3PO_4 (0.75 \text{ h})$	0.08	~0.006	

^a In glass (segregated according to the metal used) for 2 h at 250 °C and 5000 psi of 3/1 CO/H₂, 40 mL of solvent, 10 mmol of palladium, unless noted otherwise. ^b No products of reductive coupling were produced by palladium in the absence of acid; or 30% aqueous HCl, water, or 59% aqueous H_3PO_4 in the absence of palladium; or Pd/NaCl in water; or the otherwise productive PdCl₂/ water system in the presence of an equivalent of Bu₃N or py. ^c Typically ~1 g of HCO₂H and a small amount of CH₃OH were produced. ^d When the solvent was 30% aqueous HCl, the product was ClCH₂CO₂H; it is reported here as the equivalent weight of HOCH₂CO₂H. ^e 0.5-2.0 h. Use of 1 mmol of PdCl₂ gave ~0.1 g of HOCH₂CO₂H. Reaction at 220 and 280 °C produced smaller amounts of HOCH₂CO₂H. Use of 5000 psi of CO and no H₂ gave no products of reductive coupling. ^f Use of 2 mmol of H₃PO₄ gave no products of reductive coupling; the minimum amount of the stronger acid (HCl) necessary for the observation of such products appears to be less than that of the weaker acid (H₃PO₄).

 Table II.
 Palladium/Acid Induced Conversion of CO

 to Acetic Acid^a

Pd compd	solvent	CH_3CO_2H produced, ^b g
none	water, 59% aq H ₃ PO ₄ , 30% aq HCl, or 48% aq HBr	none
PdI ₂	water, 30% aq HCl, 59% aq H ₃ PO ₄ , ^c or 32% aq HI	0.01-0.1
none	56 or 65% aq HI	0.02-0.07 <i>d</i>
PdCl,	65% aq HI (2100 psi)	0.07
PdCl ₂ , PdI ₂ , or Pd black	56 or 65% aq HI (e)	0.3-0.4 ^f
PdBr ₂	48% aq H B r	0.04

^a In glass (segregated according to the metal used) for 2 h at 250 °C and 5000 psi of 75/25 CO/H₂, 40 mL of solvent, 10 mmol of palladium, unless noted otherwise. ^b No glycolic acid or methanol was detected. Formic acid was produced, usually in an amount a little greater than that of acetic acid. ^c The ¹H NMR spectrum of the reaction mixture at ambient conditions showed two absorptions in the acetyl region. One grew with time at the expense of the one that had the same chemical shift as observed when acetic acid or lithium acetyl phosphate was added to 59% aqueous H_3PO_4 . No products were observed in 85% aqueous H_3PO_4 . ^d See ref 1b. ^e 0.5-2.0 h, 75/25-100/0 CO/H₂. The yield was lower when 50/50 CO/H₂ was used. ^f 0.1-0.2 g of propionic acid was produced.^d

mmol) produced ~ 0.06 g of CH₃CO₂H in 30% aqueous HCl and ~ 0.1 g of HOCH₂CO₂H in water; Pt black in 30% aqueous HCl produced neither; PtCl₂ in water produced

neither in the absence of H_2 . Note that the increase in the $CH_3CO_2H/HOCH_2CO_2H$ ratio and in the amount of $HOCH_2CO_2H$ produced as [HCl] increased is similar to the results obtained with palladium (item 7 in the previous paragraph).

The conversion of carbon monoxide to compounds containing $CH_3C(=0)$ and $HOCH_2C(=0)$ groups is now a common reaction.

Acknowledgment. We are grateful to Wilbur L. Berry and Jack W. Fitzwater for expert technical assistance. We are also grateful to Mrs. Forster (Gerrard St., London).¹²

Registry No. CO, 630-08-0; HOCH₂CO₂H, 79-14-1; CH₃CO₂H, 64-19-7; PdCl₂, 7647-10-1; HCl, 7647-01-0; Rh(CO)₂acac, 14874-82-9; HI, 10034-85-2; I₂, 7553-56-2; ZnI₂, 10139-47-6; Ir₄(CO)₁₂, 18827-81-1; IrCl₃, 10025-83-9; Na₃IrCl₆, 15702-05-3; PtCl₂, 10025-65-7; Na₂PdCl₄, 13820-53-6; H₃PO₄, 7664-38-2; Pd, 7440-05-3; PdI₂, 7790-38-7; PdBr₂, 13444-94-5.

Supplementary Material Available: A general experimental procedure, a unified discussion of "acid catalysis" and "transition metal catalysis," references to the use of ionic hydrogenation catalysts, and a discussion of relevant chemistry of palladium (5 pages). Ordering is given on any current masthead page.

Leonard Kaplan

Union Carbide Corp. P.O. Box 8361 S. Charleston, West Virginia 25303 Received July 1, 1982